🎹
Hello
🎹
Hello
  • Crowrite
  • 2025
    • 0115-file saving
    • 0122-better way to use my own code
    • 0311-MCA
    • 0331-PSM simulation
    • 0409-neovim-config
    • 0415-git undo
    • 0416-needlets
    • 0417-pytest
    • 0422-python import
    • 0428-Radio galaxy
    • 0429-DSFG
    • 0430-confusion noise
    • 0430-radio vs ir
  • 2024
    • 0209-Linux and git basic command
    • 0213-How to take notes for research
    • 0214-Scientific method
    • 0215-Scientific method
    • 0226-it is customary to mask detected point sources in order to eliminate this spurious contribution
    • 0228-Ali-first light
    • 0314-python logger
    • 0411- Fan region and Gum nebula, Coma and Virgo cluster
    • 0417-vec.ctypes.data
    • 0419-Stokes parameter
    • 0430-PBH
    • 0521-Astrometry
    • 0523-classmethod and static method
    • 0619-Gaussian profile
    • 0619-EB noise level
    • 0703-bias from wrong covariance matrix estimation
    • 0718-np.random.choice
    • 0814-test-inline-formula
    • 0814-healpy lon lat scope
    • 0816-change $ to $$
    • 0821-len() for np.ndarray
    • 0821-angdist snippets and hp.ang2pix lonlat range
    • 0823-same name of some variable
    • 0910-FUTURE CODE
    • 0918-add prior to chi square fitting
    • 0929-PS results comparison
    • 1015-conference
    • 1031-unit test
    • 1108-git tag
    • 1118-nested title in markdown
    • 1122-some markdown format
    • 1205-python local variable
    • 1210-BAO
    • 1217-pandas index
  • Biophysics
    • Claycomb
      • Terminology
  • QUATA
    • term
  • PHYSICS
    • LENPS
      • 250409-peaks finder
      • 250418-tSZ effect
      • 240418-tSZ效应
    • PSILC
      • 0221-Statistical properties of polarized radio sources at high frequency... arxiv:1003.5846
      • 0223-Primordial B-mode Diagnostics and Self Calibrating the CMB Polarization arxiv:0912.3532
      • 0227-(WMAP) Observations: Foreground Emission arxiv:0302208
      • 0229-Masking versus removing point sources in CMB data: arxiv:1207.2315
      • 0301-Galactic cold Clump
      • 0305-constrained realization and CMB S4
      • 0306-BICEP setup
      • 0308-QUIJOTE
      • 0311-SPT point source catelogue
      • 0312-Jaffe Thesis: Foreground Challenge to CMB Polarization: Present Methodologies and New Concepts
      • 0318-The radio source counts at 15 GHz and their implications for cm-wave CMB imaging
      • 0320-Component separation methods for the PLANCK mission
      • 0328-Sparsity
      • 0329-Morphological component analysis on the sphere
      • 0326-Low-$\ell$ CMB analysis and inpainting Starck 2013
      • 0410-Planck 2018 V Planck 2015 IX
      • 0520-ACT Extragalactic Point Sources in the Southern Surveys at 150, 220 and 280 GHz
      • 0522-AGN Two-season ACTPol Extragalactic Point Sources and their Polarization properties
      • 0528-ACT DR5 maps of 18 000 square degrees of the microwave sky from ACT 2008-2018 data
      • 0828-purity and completeness
      • 0911-EB leakage test
      • 1011-power spectrum estimation for partial sky
      • 1002-apodization
      • 1015-215GHz and 95GHz / th noise power spectrum
      • 1020-compare different method pipeline-star
      • 1030-smoothing maps precautions
      • 1029-mask small scale structure
      • 1031-inpainting debug
      • 1114-cut how many number PS can give good estimate of other components
      • 1202-lmax for maps
      • 1203-theory noise level
      • 1225-multiunion and reduce lists
      • 250107-Convolution
      • 250118-recycling method factor
      • 250124-r constraint
      • 250128-new r constraint
      • 250225-TODO
Powered by GitBook
On this page
Edit on GitHub
  1. 2024

1015-conference

原初引力波探测中点源处理的新方法及其基准测试

Point sources, such as active galactic nuclei (AGNs) and dusty star-forming galaxies (DSFGs), are a significant source of foreground contamination that can mimic or obscure the true B-mode signal in CMB polarization data. To address this, various strategies like masking, inpainting, and direct subtraction have been employed, each with its own strengths and weaknesses. In our work, we introduce a new method for evaluating flux density and directly subtracting point sources from CMB maps, aiming to improve the accuracy of B-mode polarization analysis and deepen our understanding of the early universe's dynamics. We performed benchmark tests, comparing our method with traditional masking and inpainting techniques at the power spectrum level on B-mode maps. Our results demonstrate that our method outperforms the others, making it a promising approach for future data analysis.

密度扰动(标量模式)由于对称性,仅能产生无旋的E模偏振;而引力波(张量模式)会引起时空的扭曲和旋转,从而打破对称性,生成B模偏振。

Previous0929-PS results comparisonNext1031-unit test

Last updated 6 months ago