🎹
Hello
🎹
Hello
  • Crowrite
  • 2025
    • 0115-file saving
    • 0122-better way to use my own code
    • 0311-MCA
    • 0331-PSM simulation
    • 0409-neovim-config
    • 0415-git undo
    • 0416-needlets
    • 0417-pytest
    • 0422-python import
    • 0428-Radio galaxy
    • 0429-DSFG
    • 0430-confusion noise
    • 0430-radio vs ir
  • 2024
    • 0209-Linux and git basic command
    • 0213-How to take notes for research
    • 0214-Scientific method
    • 0215-Scientific method
    • 0226-it is customary to mask detected point sources in order to eliminate this spurious contribution
    • 0228-Ali-first light
    • 0314-python logger
    • 0411- Fan region and Gum nebula, Coma and Virgo cluster
    • 0417-vec.ctypes.data
    • 0419-Stokes parameter
    • 0430-PBH
    • 0521-Astrometry
    • 0523-classmethod and static method
    • 0619-Gaussian profile
    • 0619-EB noise level
    • 0703-bias from wrong covariance matrix estimation
    • 0718-np.random.choice
    • 0814-test-inline-formula
    • 0814-healpy lon lat scope
    • 0816-change $ to $$
    • 0821-len() for np.ndarray
    • 0821-angdist snippets and hp.ang2pix lonlat range
    • 0823-same name of some variable
    • 0910-FUTURE CODE
    • 0918-add prior to chi square fitting
    • 0929-PS results comparison
    • 1015-conference
    • 1031-unit test
    • 1108-git tag
    • 1118-nested title in markdown
    • 1122-some markdown format
    • 1205-python local variable
    • 1210-BAO
    • 1217-pandas index
  • Biophysics
    • Claycomb
      • Terminology
  • QUATA
    • term
  • PHYSICS
    • LENPS
      • 250409-peaks finder
      • 250418-tSZ effect
      • 240418-tSZ效应
    • PSILC
      • 0221-Statistical properties of polarized radio sources at high frequency... arxiv:1003.5846
      • 0223-Primordial B-mode Diagnostics and Self Calibrating the CMB Polarization arxiv:0912.3532
      • 0227-(WMAP) Observations: Foreground Emission arxiv:0302208
      • 0229-Masking versus removing point sources in CMB data: arxiv:1207.2315
      • 0301-Galactic cold Clump
      • 0305-constrained realization and CMB S4
      • 0306-BICEP setup
      • 0308-QUIJOTE
      • 0311-SPT point source catelogue
      • 0312-Jaffe Thesis: Foreground Challenge to CMB Polarization: Present Methodologies and New Concepts
      • 0318-The radio source counts at 15 GHz and their implications for cm-wave CMB imaging
      • 0320-Component separation methods for the PLANCK mission
      • 0328-Sparsity
      • 0329-Morphological component analysis on the sphere
      • 0326-Low-$\ell$ CMB analysis and inpainting Starck 2013
      • 0410-Planck 2018 V Planck 2015 IX
      • 0520-ACT Extragalactic Point Sources in the Southern Surveys at 150, 220 and 280 GHz
      • 0522-AGN Two-season ACTPol Extragalactic Point Sources and their Polarization properties
      • 0528-ACT DR5 maps of 18 000 square degrees of the microwave sky from ACT 2008-2018 data
      • 0828-purity and completeness
      • 0911-EB leakage test
      • 1011-power spectrum estimation for partial sky
      • 1002-apodization
      • 1015-215GHz and 95GHz / th noise power spectrum
      • 1020-compare different method pipeline-star
      • 1030-smoothing maps precautions
      • 1029-mask small scale structure
      • 1031-inpainting debug
      • 1114-cut how many number PS can give good estimate of other components
      • 1202-lmax for maps
      • 1203-theory noise level
      • 1225-multiunion and reduce lists
      • 250107-Convolution
      • 250118-recycling method factor
      • 250124-r constraint
      • 250128-new r constraint
      • 250225-TODO
Powered by GitBook
On this page
  • 🧠 总结:DSFG(尘埃星形成星系)与CIB建模的全部核心内容
  • ✅ 1. DSFG的基本观测特性
  • ✅ 2. Shot noise 与偏振建模
  • ✅ 3. Halo Model 建模CIB强度功率谱
  • ✅ 4. 星系光度建模
  • ✅ 5. MCMC 拟合与数据约束
  • ✅ 6. 偏振功率谱来自哪里?
  • 🔚 总结一句话
Edit on GitHub
  1. 2025

0429-DSFG

非常好,以下是你自从开始阅读和分析DSFG相关内容以来的系统总结,重点涵盖了DSFG的观测特性、功率谱建模、偏振贡献和Halo Model细节等方面:


🧠 总结:DSFG(尘埃星形成星系)与CIB建模的全部核心内容


✅ 1. DSFG的基本观测特性

  • **CIB(Cosmic Infrared Background)**主要由高红移的DSFG累积辐射形成;

  • 单源偏振观测有限,主要依赖:

    • M82, Arp220 单源测量(偏振度低);

    • Planck stacking 或统计方法估计平均偏振度;

    • 常用值为 ⟨ΠIR⟩∼1.4%\langle \Pi_{\mathrm{IR}} \rangle \sim 1.4\%;

  • 偏振分数分布大致符合对数正态。


✅ 2. Shot noise 与偏振建模

  • 总强度 shot noise为:

    CℓTT,shot=∫0ScutS2dNdS dSC_\ell^{TT, \mathrm{shot}} = \int_0^{S_{\mathrm{cut}}} S^2 \frac{dN}{dS} \, dS

  • 偏振 shot noise来源于非零偏振涨落(虽然平均偏振矢量为0):

    CℓEE=CℓBB=12⟨Π2⟩ CℓTT,shotC_\ell^{EE} = C_\ell^{BB} = \frac{1}{2} \langle \Pi^2 \rangle \, C_\ell^{TT, \mathrm{shot}}

  • shot noise 对 flux cut ScutS_{\mathrm{cut}} 不敏感(与radio不同),因低流量源贡献小。


✅ 3. Halo Model 建模CIB强度功率谱

使用 Limber 近似推导角功率谱:

Cℓνν′=∫dz χ−2(z)dχdza2(z)jˉν(z)jˉν′(z)Pνν′(k=ℓ/χ,z)C_\ell^{\nu\nu'} = \int dz \, \chi^{-2}(z) \frac{d\chi}{dz} a^2(z) \bar{j}_\nu(z)\bar{j}_{\nu'}(z) P_{\nu\nu'}(k=\ell/\chi,z)

功率谱 Pνν′(k,z)P_{\nu\nu'}(k,z) 分为:

  • 一光晕项(1-halo):描述同一暗晕内星系的团簇;

  • 二光晕项(2-halo):不同暗晕之间的星系偏移,主导大尺度结构;

  • shot noise:泊松源涨落(独立源)。


✅ 4. 星系光度建模

星系光度-暗晕质量关系采用参数化形式:

L(1+z)ν(M,z)=L0Φ(z)Σ(M)Θ[(1+z)ν]L_{(1+z)\nu}(M,z) = L_0 \Phi(z) \Sigma(M) \Theta[(1+z)\nu]

  • Φ(z)=(1+z)δ\Phi(z) = (1+z)^\delta:红移演化;

  • Σ(M)\Sigma(M):log-normal,质量峰值 Meff∼1012M⊙M_{\mathrm{eff}} \sim 10^{12} M_\odot;

  • Θ[(1+z)ν]\Theta[(1+z)\nu]:SED,低频为灰体谱,高频为幂律尾;

  • 参数包括:L0L_0, TdT_d, δ\delta, MeffM_{\mathrm{eff}}。


✅ 5. MCMC 拟合与数据约束

  • 使用 Herschel/SPIRE 250250, 350350, 500 μm500\,\mu\mathrm{m} 功率谱数据;

  • 同时拟合宇宙恒星形成率密度(SFRD);

  • 使用 CosmoMC 做MCMC,拟合上述 Halo 参数及 6 个 shot noise 振幅。


✅ 6. 偏振功率谱来自哪里?

  • 二光晕项不贡献偏振功率谱(因为偏振角平均为零);

  • 一光晕项中只有卫星–卫星项可能有非零偏振贡献(中心–卫星项会被潮汐扰动抵消);

  • 极限估计下:

    CℓEE=CℓBB=12×P1h[∝fsat2]×⟨ΠIR2⟩C_\ell^{EE} = C_\ell^{BB} = \frac{1}{2} \times P_{1h}[\propto f_{\mathrm{sat}}^2] \times \langle \Pi_{\mathrm{IR}}^2 \rangle

  • 但实际贡献极小,远低于 shot noise;

  • 因此不能简单将总强度功率谱乘以 ⟨Π⟩2\langle \Pi \rangle^2 估计偏振功率(会高估)。


🔚 总结一句话

你已经系统掌握了DSFG如何贡献CIB强度与偏振功率谱: shot noise 是主导项,一光晕偏振贡献可忽略, 使用Halo Model建模可精确捕捉DSFG的功率谱结构,SED、光度质量关系、偏振建模都已清晰。


Previous0428-Radio galaxyNext0430-confusion noise

Last updated 10 days ago